## MC74HCT4066A

## Quad Analog Switch/ Multiplexer/Demultiplexer with LSTTL Compatible Inputs

## High-Performance Silicon-Gate CMOS

The MC74HCT4066A utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF-channel leakage current. This bilateral switch/ multiplexer/demultiplexer controls analog and digital voltages that may vary across the full power-supply range (from $V_{C C}$ to GND).

The HCT4066A is identical in pinout to the metal-gate CMOS MC14016 and MC14066. Each device has four independent switches. The device has been designed so the ON resistances $\left(\mathrm{R}_{\mathrm{ON}}\right)$ are more linear over input voltage than $\mathrm{R}_{\mathrm{ON}}$ of metal-gate CMOS analog switches.

The ON/OFF control inputs are compatible with standard CMOS and LSTTL outputs. For analog switches with voltage-level translators, see the HC4316A.

## Features

- Fast Switching and Propagation Speeds
- High ON/OFF Output Voltage Ratio
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Wide Power-Supply Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=4.5$ to 5.5 V
- Analog Input Voltage Range ( $\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=0$ to 5.5 V
- Improved Linearity and Lower ON Resistance over Input Voltage than the MC14016 or MC14066
- Low Noise
- Chip Complexity: 44 FETs or 11 Equivalent Gates
- These are $\mathrm{Pb}-$ Free Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com


See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

## MC74HCT4066A



Figure 1. Pin Assignment
FUNCTION TABLE

| On/Off Control <br> Input | State of <br> Analog Switch |
| :---: | :---: |
| L | Off |
| H | On |



ANALOG INPUTS/OUTPUTS $=X_{A}, X_{B}, X_{C}, X_{D}$ PIN $14=V_{C C}$
PIN 7 = GND
Figure 2. Logic Diagram

ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :--- | :--- | :---: |
| MC74HCT4066ADG | SOIC-14 <br> (Pb-Free) | 55 Units / Rail |
| MC74HCT4066ADR2G | SOIC-14 <br> (Pb-Free) | $2500 /$ Tape \& Reel |
| MC74HCT4066ADTR2G | TSSOP-14* | $2500 /$ Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

MAXIMUM RATINGS

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Positive DC Supply Voltage (Referenced to GND) | -0.5 to +14.0 | V |
| $\mathrm{~V}_{\text {IS }}$ | Analog Input Voltage (Referenced to GND) | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| $\mathrm{~V}_{\text {in }}$ | Digital Input Voltage (Referenced to GND) | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| I | DC Current Into or Out of Any Pin | $\pm 25$ | mA |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation in Still Air,SOIC Package <br>  <br> TSSOP Package $\dagger$ | 500 | mW |
| $\mathrm{~T}_{\text {stg }}$ | Storage Temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
$\dagger$ Derating - SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $G N D \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or $\mathrm{V}_{\mathrm{CC}}$ ). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus.

RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter | Min | Max |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Positive DC Supply Voltage (Referenced to GND) | 4.5 | 5.5 |
| $\mathrm{~V}_{\text {IS }}$ | Analog Input Voltage (Referenced to GND) | GND | V |
| $\mathrm{V}_{\text {in }}$ | Digital Input Voltage (Referenced to GND) | GND | V |
| $\mathrm{V}_{\mathrm{IO}}{ }^{*}$ | Static or Dynamic Voltage Across Switch | - | $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature, All Package Types | -55 | 1.2 |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | Input Rise and Fall Time, ON/OFF Control Inputs <br> (Figure 10) | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | V |

*For voltage drops across the switch greater than 1.2 V (switch on), excessive $\mathrm{V}_{\mathrm{Cc}}$ current may be drawn; i.e., the current out of the switch may contain both $\mathrm{V}_{\mathrm{CC}}$ and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)

| Symbol | Parameter | Test Conditions | $\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$ | Guaranteed Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | $\leq 85^{\circ} \mathrm{C}$ | $\leq 125^{\circ} \mathrm{C}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Minimum High-Level Voltage ON/OFF Control Inputs | $\mathrm{R}_{\text {on }}=$ Per Spec | 4.5 to 5.5 | 2.0 | 2.0 | 2.0 | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Maximum Low-Level Voltage ON/OFF Control Inputs | $\mathrm{R}_{\text {on }}=$ Per Spec | 4.5 to 5.5 | 0.8 | 0.8 | 0.8 | V |
| 1 in | Maximum Input Leakage Current ON/OFF Control Inputs | $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cc }}$ or GND | 5.5 | $\pm 0.1$ | $\pm 1.0$ | $\pm 1.0$ | $\mu \mathrm{A}$ |
| Icc | Maximum Quiescent Supply Current (per Package) | $\begin{aligned} & V_{\mathrm{in}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \\ & \mathrm{~V}_{10}=0 \mathrm{~V} \end{aligned}$ | 5.5 | 2 | 20 | 40 | $\mu \mathrm{A}$ |
| $\Delta_{\text {cc }}$ | Additional Quiescent Supply Current (per Input) | $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ <br> Other control inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND | 4.5 to 5.5 | 360 | 450 | 490 | $\mu \mathrm{A}$ |

DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)

| Symbol | Parameter | Test Conditions | $\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$ | Guaranteed Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | $\leq 85^{\circ} \mathrm{C}$ | $\leq 125^{\circ} \mathrm{C}$ |  |
| $\mathrm{R}_{\text {on }}$ | Maximum "ON" Resistance | $\begin{aligned} & \mathrm{V}_{\text {in }} \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to GND } \\ & \mathrm{I}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \text { (Figures } 3,4 \text { ) } \end{aligned}$ | 4.5 | 120 | 160 | 200 | $\Omega$ |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{in}} \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \text { (Endpoints) } \\ & \mathrm{I}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \text { (Figures 3, 4) } \end{aligned}$ | 4.5 | 70 | 85 | 120 |  |
| $\Delta \mathrm{R}_{\text {on }}$ | Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package | $\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\text {IS }}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{GND}\right) \\ & \mathrm{IS}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \end{aligned}$ | 4.5 | 20 | 25 | 30 | $\Omega$ |
| $\mathrm{l}_{\text {off }}$ | Maximum Off-Channel Leakage Current, Any One Channel | $\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{10}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \text { Switch Off (Figure 5) } \end{aligned}$ | 5.5 | 0.1 | 0.5 | 1.0 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {on }}$ | Maximum On-Channel Leakage Current, Any One Channel | $\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IH }} \\ & \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \text { (Figure } 6 \text { ) } \end{aligned}$ | 5.5 | 0.1 | 0.5 | 1.0 | $\mu \mathrm{A}$ |

AC ELECTRICAL CHARACTERISTICS ( $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, ON/OFF Control Inputs: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ )

| Symbol | Parameter | $\mathrm{V}_{\mathrm{cc}}$ | Guaranteed Limit |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$ | $\leq 85^{\circ} \mathrm{C}$ | $\leq 125^{\circ} \mathrm{C}$ |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Maximum Propagation Delay, Analog Input to Analog Output (Figures 10 and 11) | 4.5 | 10 | 13 | 15 | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$ | Maximum Propagation Delay, ON/OFF Control to Analog Output (Figures 12 and 13) | 4.5 | 30 | 38 | 45 | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$ | Maximum Propagation Delay, ON/OFF Control to Analog Output (Figures 12 and 13) | 4.5 | 25 | 32 | 37 | ns |
| C | Maximum Capacitance <br>  <br>  <br>  <br> ON/OFF Control Input <br> Control Input = GND <br> Analog I/O <br> Feedthrough | - | 10 | 10 | 10 | pF |
|  |  | - | $\begin{aligned} & 35 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 35 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 35 \\ & 1.0 \end{aligned}$ |  |


| $\mathrm{C}_{\text {PD }}$ |  | Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | pF |
| :---: | :---: | :---: | :---: |
|  | Power Dissipation Capacitance (Per Switch) (Figure 15)* | 15 |  |

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}^{2} f+I_{C C} V_{C C}$.

## MC74HCT4066A

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

| Symbol | Parameter | Test Conditions | $\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{cc}}}$ | $\begin{gathered} \hline \text { Limit }^{*} \\ 25^{\circ} \mathrm{C} \\ 54 / 74 \mathrm{HCT} \end{gathered}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BW | Maximum On-Channel Bandwidth or Minimum Frequency Response (Figure 7) | $\mathrm{f}_{\text {in }}=1 \mathrm{MHz}$ Sine Wave <br> Adjust $\mathrm{f}_{\text {in }}$ Voltage to Obtain 0 dBm at $\mathrm{V}_{\text {OS }}$ Increase $f_{\text {in }}$ Frequency Until dB Meter Reads - 3 dB $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ | 4.5 | 150 | MHz |
| - | Off-Channel Feedthrough Isolation (Figure 8) | $\begin{array}{\|l} \begin{array}{l} \mathrm{f}_{\text {in }} \equiv \text { Sine Wave } \\ \text { Adjust } \mathrm{f}_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\mathrm{IS}} \\ \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{array} \end{array}$ | 4.5 | -50 -40 | dB |
| - | Feedthrough Noise, Control to Switch <br> (Figure 9) | $\begin{array}{\|l\|} \hline V_{\text {in }} \leq 1 \mathrm{MHz} \text { Square Wave }\left(t_{r}=t_{f}=6 \mathrm{~ns}\right) \\ \text { Adjust } R_{L} \text { at Setup so that } I_{S}=0 \mathrm{~A} \\ \\ R_{L}=600 \Omega, C_{L}=50 \mathrm{pF} \\ R_{L}=10 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF} \end{array}$ | 4.5 <br> 4.5 | 60 30 | mV PP |
| - | Crosstalk Between Any Two Switches <br> (Figure 14) | $\begin{array}{\|l\|} \hline \mathrm{f}_{\text {in }} \equiv \text { Sine Wave } \\ \text { Adjust } f_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\mathrm{IS}} \\ \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{array}$ | 4.5 4.5 | -70 -80 | dB |
| THD | Total Harmonic Distortion (Figure 16) | $\begin{array}{r} \hline \mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{THD}=T H D_{\text {Measured }}-\mathrm{THD}_{\text {Source }} \\ \mathrm{V}_{\text {IS }}=4.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \end{array}$ | 4.5 | 0.10 | \% |

[^0]

Figure 3. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$


Figure 4. On Resistance Test Set-Up


Figure 5. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up


Figure 6. Maximum On Channel Leakage Current, Test Set-Up

*Includes all probe and jig capacitance.
Figure 7. Maximum On-Channel Bandwidth Test Set-Up

*Includes all probe and jig capacitance.

Figure 9. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set-Up


Figure 8. Off-Channel Feedthrough Isolation, Test Set-Up


Figure 10. Propagation Delays, Analog In to Analog Out

MC74HCT4066A

*Includes all probe and jig capacitance.

Figure 11. Propagation Delay Test Set-Up

*Includes all probe and jig capacitance.
Figure 13. Propagation Delay Test Set-Up

$\sqrt{\square}$
ON/OFF CONTROL


Figure 15. Power Dissipation Capacitance Test Set-Up


Figure 12. Propagation Delay, ON/OFF Control to Analog Out

*Includes all probe and jig capacitance.
Figure 14. Crosstalk Between Any Two Switches, Test Set-Up

*Includes all probe and jig capacitance.
Figure 16. Total Harmonic Distortion, Test Set-Up


Figure 17. Plot, Harmonic Distortion

## APPLICATION INFORMATION

Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to $\mathrm{V}_{\mathrm{CC}}$ or GND through a low value resistor. This minimizes crosstalk and feedthrough noise that may be picked-up by the unused I/O pins.

The maximum analog voltage swings are determined by the supply voltages $\mathrm{V}_{\mathrm{CC}}$ and GND. The positive peak analog voltage should not exceed $\mathrm{V}_{\mathrm{CC}}$. Similarly, the negative peak analog voltage should not go below GND. In the example below, the difference between $\mathrm{V}_{\mathrm{CC}}$ and GND is twelve volts. Therefore, using the configuration in Figure 16, a maximum


Figure 18. 5 V Application
analog signal of twelve volts peak-to-peak can be controlled.
When voltage transients above $\mathrm{V}_{\mathrm{CC}}$ and/or below GND are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure 17. These diodes should be small signal, fast turn-on types able to absorb the maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with MOSORB® (MOSORB is an acronym for high current surge protectors). MOSORBs are fast turn-on devices ideally suited for precise DC protection with no inherent wear out mechanism.


Figure 19. Transient Suppressor Application

## MC74HCT4066A



Figure 20. LSTTL/NMOS to HCTMOS Interface


Figure 21. 4-Input Multiplexer


Figure 22. Sample/Hold Amplifier

## MC74HCT4066A

## PACKAGE DIMENSIONS

SOIC-14
CASE 751A-03
ISSUE J


SOLDERING FOOTPRINT*
NOTES:
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER.

DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 DAMBAR PROTRUSION SHALL BE 0.1
$(0.005)$ TOTAL IN EXCESS OF THE D (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.

| DIM | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | 8.55 | 8.75 | 0.337 | 0.344 |
| B | 3.80 | 4.00 | 0.150 | 0.157 |
| C | 1.35 | 1.75 | 0.054 | 0.068 |
| D | 0.35 | 0.49 | 0.014 | 0.019 |
| F | 0.40 | 1.25 | 0.016 | 0.049 |
| G | 1.27 BSC |  | 0.050 BSC |  |
| J | 0.19 | 0.25 | 0.008 | 0.009 |
| K | 0.10 | 0.25 | 0.004 | 0.009 |
| M | $0^{\circ}$ | $7^{\circ}$ | $0^{\circ}$ | $7^{\circ}$ |
| P | 5.80 | 6.20 | 0.228 | 0.244 |
| R | 0.25 | 0.50 | 0.010 | 0.019 |



DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## MC74HCT4066A

## PACKAGE DIMENSIONS

TSSOP-14
CASE 948G-01
ISSUE B

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## MC74HCT4066A

ON Semiconductor and (01) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative


[^0]:    *Guaranteed limits not tested. Determined by design and verified by qualification.

